

ADVANCED GCE MATHEMATICS

Probability & Statistics 2

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None

4733

Friday 15 January 2010 Afternoon

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- This document consists of 4 pages. Any blank pages are indicated.

1 The values of 5 independent observations from a population can be summarised by

$$\Sigma x = 75.8, \quad \Sigma x^2 = 1154.58.$$

Find unbiased estimates of the population mean and variance.

- 2 A college has 400 students. A journalist wants to carry out a survey about food preferences and she obtains a sample of 30 pupils from the college by the following method.
 - Obtain a list of all the students.
 - Number the students, with numbers running sequentially from 0 to 399.
 - Select 30 random integers in the range 000 to 999 inclusive. If a random integer is in the range 0 to 399, then the student with that number is selected. If the number is greater than 399, then 400 is subtracted from the number (if necessary more than once) until an answer in the range 0 to 399 is selected, and the student with that number is selected.

(i)	Explain why this method is unsatisfactory.	[2]
(ii)	Explain how it could be improved.	[1]

- In a large town, 35% of the inhabitants have access to television channel C. A random sample of 60 inhabitants is obtained. Use a suitable approximation to find the probability that 18 or fewer inhabitants in the sample have access to channel C. [6]
- 4 80 randomly chosen people are asked to estimate a time interval of 60 seconds without using a watch or clock. The mean of the 80 estimates is 58.9 seconds. Previous evidence shows that the population standard deviation of such estimates is 5.0 seconds. Test, at the 5% significance level, whether there is evidence that people tend to underestimate the time interval. [7]
- **5** The number of customers arriving at a store between 8.50 am and 9 am on Saturday mornings is a random variable which can be modelled by the distribution Po(11.0). Following a series of price cuts, on one particular Saturday morning 19 customers arrive between 8.50 am and 9 am. The store's management claims, first, that the mean number of customers has increased, and second, that this is due to the price cuts.
 - (i) Test the first part of the claim, at the 5% significance level. [7]
 - (ii) Comment on the second part of the claim.
- 6 The continuous random variable X has the distribution $N(\mu, \sigma^2)$.
 - (i) Each of the three following sets of probabilities is impossible. Give a reason in each case why the probabilities cannot both be correct. (You should not attempt to find μ or σ .)
 - (a) P(X > 50) = 0.7 and P(X < 50) = 0.2 [1]
 - (b) P(X > 50) = 0.7 and P(X > 70) = 0.8 [1]
 - (c) P(X > 50) = 0.3 and P(X < 70) = 0.3 [1]
 - (ii) Given that P(X > 50) = 0.7 and P(X < 70) = 0.7, find the values of μ and σ . [4]

[1]

[4]

7 The continuous random variable T is equally likely to take any value from 5.0 to 11.0 inclusive.

(i) Sketch the graph of the	e probability density function of T.	[2]
(-)	· · · · · · · · · · · · · · · · · · ·	L-J

- (ii) Write down the value of E(T) and find by integration the value of Var(T). [5]
- (iii) A random sample of 48 observations of *T* is obtained. Find the approximate probability that the mean of the sample is greater than 8.3, and explain why the answer is an approximation. [6]
- 8 The random variable *R* has the distribution B(10, *p*). The null hypothesis H_0 : *p* = 0.7 is to be tested against the alternative hypothesis H_1 : *p* < 0.7, at a significance level of 5%.
 - (i) Find the critical region for the test and the probability of making a Type I error. [3]
 - (ii) Given that p = 0.4, find the probability that the test results in a Type II error. [3]
 - (iii) Given that *p* is equally likely to take the values 0.4 and 0.7, find the probability that the test results in a Type II error. [2]
- **9** Buttercups in a meadow are distributed independently of one another and at a constant average incidence of 3 buttercups per square metre.
 - (i) Find the probability that in 1 square metre there are more than 7 buttercups. [2]
 - (ii) Find the probability that in 4 square metres there are either 13 or 14 buttercups. [3]
 - (iii) Use a suitable approximation to find the probability that there are no more than 69 buttercups in 20 square metres. [5]
 - (iv) (a) Without using an approximation, find an expression for the probability that in *m* square metres there are at least 2 buttercups. [2]
 - (b) It is given that the probability that there are at least 2 buttercups in *m* square metres is 0.9. Using your answer to part (a), show numerically that *m* lies between 1.29 and 1.3. [4]

4733 Probability & Statistics 2

Penalise over-specified answers (> 6 SF) first time but only once per paper. Use Oor Oto annotate "over-assertive" or "no context" respectively

1		$\hat{\mu} = \bar{x} = 15.16$	B1		15.16 or 15.2 as answer only
		$\hat{\sigma}^2 = \frac{5}{4}s^2$	M1		Use $\frac{\Sigma x^2}{5} - \bar{x}^2$ [=1.0904]
			M1		Multiply by 5/4, or equiv for single formula
		= 1.363	A1	4	Final answer 1.36 or 1.363 only, not isw
2	(i)	Not all equally likely – those in	M1		Not all equally likely stated or implied
		range 0 to 199 more likely to be	A1	2	Justified by reference to numbers, no
		chosen			spurious reasons
	(ii)	Ignore random numbers greater	B1	1	Any valid resolution of this problem, no
		than 799, or 399			spurious reasons
3		$B(60, 0.35) \approx N(21, 13.65)$	M1		B(60, 0.35) stated or implied
		$+(18.5-21) - \Phi(-0.6767)$	M1		N(21,)
		$\Phi\left[\frac{13.65}{\sqrt{13.65}}\right] = \Phi(-0.0707)$	A1		Variance or $SD = 13.65$
		-1 0.7507	M1		Standardise, their <i>np</i> and \sqrt{npq} or <i>npq</i> ,
		-1-0.7307			wrong or no cc
			Al		Both \sqrt{npq} and cc correct
		= 0.2493	Al	6	Answer, a.r.t. 0.249
4		$H_0: \mu = 60; H_1: \mu < 60$	B2		Both correct, B2
		$(\alpha) \qquad z = \frac{58.9 - 60}{2} = -1.967$			B1 for one error, but not x , t , \overline{x} or \overline{t}
		$\frac{1}{\sqrt{5^2/80}}$	M1		Standardise 58.9 & $\sqrt{80}$, allow – or $\sqrt{100}$ errors
			Al		<i>z</i> , art –1.97 or <i>p</i> in range [0.024, 0.025]
		<-1.645	B1		Explicit comparison with –1.645 or 0.05, or
					+1.645 or 0.95 if 1.967 or 0.976 used
	or:	$(\beta)_{c} = 60 - 1.645 \times \frac{5}{5} = 59.08$	MI		$60 - z \times 5/\sqrt{80}$, any $z = \Phi^{-1}$, allow $\sqrt{100}$ errors or
		$\sqrt{80}$			\pm , not just +; $z = 1.645$ and compare 58.9
		58.9 < 59.08	AI		59.1 or better, \checkmark on wrong z
		Reject H ₀	MI		Correct first conclusion, needs essentially
		Significant avidence that people	A 1 🖌	7	correct method including $\sqrt{80}$ or 80
		significant evidence that people	AI◀	/	Contextualised, uncertainty acknowledged
		underestimate time			SR: $\mu = 58.9$: BUMIA0B1 max 2//
5	(i)	$11 \cdot 2 = 110$	D)		Allow <i>u</i> Doth correct D2
3	(1)	$\Pi_0 \cdot \lambda = 11.0$	D2		Allow μ . Both collect, B2 One error: B1 but not C r ato
		$\Pi_1 \cdot \Lambda \ge 11.0$	M1		Find $D(> 10)$ [or $D(< 10)$ if later 0.05]
		$\begin{array}{c} (\alpha) & P(\geq 19) - 1 - 0.9823 \\ - 0.0177 \end{array}$	A1		r = 100000000000000000000000000000000000
		-0.0177	B1		Compare 0.05 [0.95 if consistent] needs
		< 0.05	21		M1
		(B) $CR > 18$	M1		CR or CV 16/17/18/19 stated or clearly
		(p) $end = 10,$			implied. but not <
		P(> 18) = 0.0322	A1		18 and 0.0322 both seen, allow 0.9678
		19 > 18	B1		Explicit comparison with 19, needs M1
		Reject H ₀	M1		Needs essentially correct method &
			_		comparison
		Significant evidence of an	A1	7	Contextualised, uncertainty acknowledged
		increase in number of customers			SR: Normal, or $P(= 19)$ or $P(\le 19)$ or
					P(> 19): First B2 only.
	(ii)	Can't deduce cause-and-effect, or	B1	1	Conclusion needed. No spurious reasons.
		there may be other factors			If "DNR" in (i), "couldn't deduce even
					if"

6	(i)	(a) Probabilities don't total 1	B1	1	Equivalent statement
		(b) $P(>70)$ must be $< P(>50)$	B1	1	Equivalent statement
		(c) $P(>50) = 0.3 \implies \mu < 50$	B1	1	Any relevant valid statement, e.g. " $P(< 50)$
		$P(<70) = 0.3 \Rightarrow \mu > 70$			= 0.7 but P(< 50) must be < P(< 70)"
	(ii)	$\mu = 60$ by symmetry	B1		$\mu = 60$ obtained at any point, allow from Φ
		$10 - \Phi^{-1}(0,7) = 0.524(4)$	M1		One standardisation, equate to Φ^{-1} , not
		$\frac{-}{\sigma} = \Phi (0.7) = 0.324(4)$			0.758
		$\sigma = 10/0.5243$	B1		$\Phi^{-1} \in [0.524, 0.5245]$ seen
		= 19.084	A1	4	σ in range [19.07, 19.1], e.g. 19.073
7	(i)	A	M1		Horizontal line
			A1	2	Evidence of truncation
]			[no need for labels]
		<u> </u>			
		5 11			
	(ii)	$\mu = 8$	B1		8 only, cwd
		$\begin{bmatrix} 11 & 1 & t^2 & dt & - & 1 & t^3 \end{bmatrix}^{11} = \begin{bmatrix} 1 & t^3 \end{bmatrix}^{11}$	M1		Attempt $\int kt^2 dt$, limits 5 and 11 seen
		$\int_{5}^{5} \frac{1}{6} i u = \lim_{1 \le 1}^{1} i \int_{5}^{5} [-07]$	B1		k = 1/6 stated or implied
		-8^{2}	M1		Subtract their (non-zero) mean ²
		= 3	A1	5	Answer 3 only, <i>not</i> from MF1
	(iii)	N(8, 3/48)	M1		Normal stated or implied
		$1 = \pi \left(\frac{8.3 - 8}{2} \right) - 1 = \Phi(1, 2)$	A1		Mean 8
		$1-\Phi\left(\frac{1}{\sqrt{3/48}}\right)^{-1}=\Phi(1.2)$	A1		Variance their (non-zero) (ii)/48
		= 1 - 0.8848	M1		Standardise, \sqrt{n} , ignore sign or \sqrt{n} errors. cc:
		1 0.0010			M0
		= 0.1151	A1		Answer, art 0.115
		Normal distribution only approx.	B1	6	Any equivalent comment, e.g. CLT used
8	(i)	$P(\le 4) = 0.0473$	M1		$P(\le r)$ from B(10, 0.7), $r = 3/4/5$, not N
		Therefore CR is ≤ 4	B1		"≤ 4" stated, not just "4", nothing else
		P(Type I error) = 4.73%	A1	3	Answer, art 0.0473 or 4.73%, must be stated
	(ii)	B(10, 0.4) and find P(>4)	M1		Must be this, <i>not</i> isw, f on (i)
		$1 - P(\leq 4)$	M1		Allow for 0.6177 or 0.1622
		= 0.3669	A1	3	Answer, art 0.367
	(iii)	0.5×0.3669	M1		$0.5 \times (ii)$
		= 0.18345	A1	2	Ans correct to 3 SF, e.g. 0.184 from 0.367

9	(i)	$1 - P(\le 7) = 1 - 0.9881$	M1		Allow for 0.0038 or 0.0335	
		= 0.0119	A1	2	Answer, a.r.t. 0.0119	
	(ii)	Po(12)	M1		Po(12) stated or implied	
		$P(\le 14) - P(\le 12)$	M1		Formula, 2 consecutive correct terms, or	
		[0.7720 - 0.5760]			tables, e.g0905 or .3104 or .1629	
		= 0.196	A1	3	Answer, art 0.196	
	(iii)	$Po(60) \approx N(60, 60)$	M1		N(60,)	
			A1		Variance or SD 60	
		$\Phi\left(\frac{69.5 - 60}{\sqrt{60}}\right) = \Phi(1.226)$	M1		Standardise, $\lambda \& \sqrt{\lambda}$, allow λ or wrong or no	
					сс	
			A1		$\sqrt{\lambda}$ and cc both correct	
		= 0.8899	A1	5	Answer 0.89 or a.r.t. 0.890	
	(iv)	(a) $1 - e^{-3m}(1 + 3m)$	M1		M1 for one error, e.g. no "1 –", or extra term,	
			A1	2	or 0 th term missing; answer, aesf	
		(b) $m = 1.29$,	M1		Substitute 1.29 or 1.3 into appropriate fn	
		p = 0.89842	A1		Comp 0.9 0.1 0	
		m = 1.3, $p = 0.9008Straddles 0.9, therefore solution$	A1		1.29 0.898 0.1015800158	
					1.3 0.901 0.09918 .0008146	
				1	Explicit comparison with relevant value, &	
		between 1.29 and 1.3	AI	1 4	conclusion, needs both ps correct	
	or	Method for iteration; 1.296	M1A1		Can be implied by at least 1.296	
		1.2965or better; conclusion	A1A1		Need at least 4 dp for M1A2	
		stated			_	